10 research outputs found

    Onboard Mission- and Contingency Management based on Behavior Trees for Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have gained significant attention for their potential in various sectors, including surveillance, logistics, and disaster management. This thesis focuses on developing a novel onboard mission and contingency management system based on Behavior Trees for UAVs. The study aims to assert if behavior trees can be effectively applied to this domain and how they perform with respect to other modelling architectures. Furthermore, this document explores which tree structures are more efficient, good-design practices and behavior tree limitations. Overall, this thesis addresses the challenge of autonomous onboard decision-making of UAVs in complex and dynamic environments, particularly in the context of delivery missions in off-shore wind farms. The developed architecture is tested in a simulated environment. The research integrates a Skill Manager, a Mission Planner, and a Mission and Contingency Manager. The architecture leverages Behavior Trees to facilitate both mission execution and contingency management. The thesis also presents a quantitative analysis of key performance indicators, providing a comparative evaluation against traditional architectures like Finite State Machines. The results indicate that the proposed system is efficient in mission execution and effective in handling contingencies. This study offers a comprehensive structure targeting onboard planning, contingency management and concurrent actions execution. It also presents a quantitative analysis of Behavior Trees' performance in UAV mission execution and reactivity to contingent situations. It contributes to the ongoing discourse on UAV autonomy, offering insights beneficial for the broader deployment of UAVs in various industrial applications

    Despite Vaccination: A Real-Life Experience of Severe and Life-Threatening COVID-19 in Vaccinated and Unvaccinated Patients

    No full text
    Some vaccinated individuals still develop severe COVID-19, and the underlying causes are not entirely understood. We aimed at identifying demographic, clinical, and coinfection characteristics of vaccinated patients who were hospitalized. We also hypothesized that coinfections might play a role in disease severity and mortality. We retrospectively collected data from our COVID-19 registry for whom vaccination data were available. Patients were split into groups based on the number of administered doses (zero, one, two, or three). Data were assessed with Chi-square and Kruskal–Wallis tests and multiple logistic regression analysis. We collected data from 1686 patients and found that intra-hospital mortality was not associated to the vaccination status (e.g., p = 0.2 with three doses), while older age, sepsis, and non-viral pneumonia were (p < 0.001). Unvaccinated patients needed mechanical ventilation more often (8.5%) than vaccinated patients, in whom the probability of mechanical ventilation decreased with increasing doses (8.7%, 2.8%, 0%). We did not find more coinfections in vaccinated people. We concluded that there is a lack of real-life data to adequately characterize the pathophysiology and risk factors of patients who develop severe COVID-19, but coinfections do not appear to play a role in disease severity

    Alpha-Mannosidosis: Therapeutic Strategies

    No full text
    Alpha-mannosidosis (&alpha;-mannosidosis) is a rare lysosomal storage disorder with an autosomal recessive inheritance caused by mutations in the gene encoding for the lysosomal &alpha;-d-mannosidase. So far, 155 variants from 191 patients have been identified and in part characterized at the biochemical level. Similarly to other lysosomal storage diseases, there is no relationship between genotype and phenotype in alpha-mannosidosis. Enzyme replacement therapy is at the moment the most effective therapy for lysosomal storage disease, including alpha-mannosidosis. In this review, the genetic of alpha-mannosidosis has been described together with the results so far obtained by two different therapeutic strategies: bone marrow transplantation and enzyme replacement therapy. The primary indication to offer hematopoietic stem cell transplantation in patients affected by alpha-mannosidosis is preservation of neurocognitive function and prevention of early death. The results obtained from a Phase I&ndash;II study and a Phase III study provide evidence of the positive clinical effect of the recombinant enzyme on patients with alpha-mannosidosis

    Regulation of self-renewal and senescence in primitive mesenchymal stem cells by Wnt and TGFβ signaling

    No full text
    Abstract Background The therapeutic application of multipotent mesenchymal stem cells (MSCs) encounters significant challenges, primarily stemming from their inadequate growth and limited self-renewal capabilities. Additionally, as MSCs are propagated, their ability to self-renew declines, and the exact cellular and molecular changes responsible for this are poorly understood. This study aims to uncover the complex molecular mechanisms that govern the self-renewal of primitive (p) MSCs. Methods We grew pMSCs using two types of medium, fetal bovine serum (FM) and xeno-free (XM), at both low passage (LP, P3) and high passage (HP, P20). To evaluate LP and HP pMSCs, we examined their physical characteristics, cell surface markers, growth rate, colony-forming ability, BrdU assays for proliferation, telomerase activity, and potential to differentiate into three lineages. Moreover, we conducted RNA-seq to analyze their transcriptome and MNase-seq analysis to investigate nucleosome occupancies. Results When grown in FM, pMSCs underwent changes in their cellular morphology, becoming larger and elongated. This was accompanied by a decrease in the expression of CD90 and CD49f, as well as a reduction in CFE, proliferation rate, and telomerase activity. In addition, these cells showed an increased tendency to differentiate into the adipogenic lineage. However, when grown in XM, pMSCs maintained their self-renewal capacity and ability to differentiate into multiple lineages while preserving their fibroblastoid morphology. Transcriptomic analysis showed an upregulation of genes associated with self-renewal, cell cycle regulation, and DNA replication in XM-cultured pMSCs, while senescence-related genes were upregulated in FM-cultured cells. Further analysis demonstrated differential nucleosomal occupancies in self-renewal and senescence-related genes for pMSCs grown in XM and FM, respectively. These findings were confirmed by qRT-PCR analysis, which revealed alterations in the expression of genes related to self-renewal, cell cycle regulation, DNA replication, differentiation, and senescence. To understand the underlying mechanisms, we investigated the involvement of Wnt and TGFβ signaling pathways by modulating them with agonists and antagonists. This experimental manipulation led to the upregulation and downregulation of self-renewal genes in pMSCs, providing further insights into the signaling pathways governing the self-renewal and senescence of pMSCs. Conclusion Our study shows that the self-renewal potential of pMSCs is associated with the Wnt pathway, while senescence is linked to TGFβ

    The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study

    No full text
    Several criteria exist to diagnose pulmonary aspergillosis with varying degrees of certainty in specific populations, including oncohaematological patients (EORTC/MSG), ICU patients (mAspICU) and COVID-19 patients (ECMM). At the beginning of the pandemic, however, the diagnosis of COVID-19-Associated Pulmonary Aspergillosis (CAPA) could not be performed easily, and the decision to treat (DTT) was empirical. In this cross-sectional retrospective study including patients with SARS-CoV-2 infection and suspicion of CAPA, we studied the concordance between the DTT and the three diagnostic criteria using Cohen’s coefficient, and then we identified the factors associated with the DTT and corrected them by treatment to study the influence of the diagnostic criteria on survival. We showed good concordance of the DTT and mAspICU and ECMM criteria, with “compatible signs”, “positive culture” and “positive galactomannan” influencing the DTT. Treatment also showed a positive effect on survival once corrected for a putative, possible or probable diagnosis of CAPA using mAspICU and ECMM criteria. We conclude that EORTC/MSGERC are not considered applicable in clinical practice due to the lack of inclusion of signs and symptoms and do not lead to improved survival. mAspICU and ECMM criteria showed a good degree of agreement with the DTT and a positive correlation with patient recovery

    DataSheet1_The potential role of integrin alpha 6 in human mesenchymal stem cells.docx

    No full text
    Human mesenchymal stem cells (MSCs) are isolated from various adult and perinatal tissues. Although mesenchymal stem cells from multiple sources exhibit similar morphology and cell surface markers, they differ in their properties. In this study, we determined that the expression of integrin alpha 6 (ITGA6) and ITGA6 antisense RNA (ITGA6-AS1) correlates with the proliferation, cell size, and differentiation potential. The expression of ITGA6 was inversely correlated with ITGA6-AS1 in MSCs. The expression of ITGA6 was higher, but ITGA6-AS1 was lower in MSCs from cord placenta junction, cord tissue, and Wharton’s jelly. In contrast, ITGA6 expression was lower, while ITGA6-AS1 was higher in MSCs from the placenta. The bioinformatic analysis showed that ITGA6 genomic DNA transcribes ITGA6-AS1 from the reverse strand, overlapping ITGA6 exon-2. Additionally, we identify several putative promoters (P1-P10) of ITGA6. ITGA6-P10 is CG rich and contains CGI. EMBOSS Cpgplot software revealed a CGI length of 180 bp that extends from nucleotide 125 to 304 of the P10 sequence. We suggest that the post-transcriptional regulation of the ITGA6 in mesenchymal stem cells is controlled by the ITGA6-AS1, which could be a critical factor responsible for the heterogeneity in function and cell fate of human MSCs. These results may provide further impetus for investigations to unravel the mechanisms of ITGA6 regulation that could help maintain or improve the properties of mesenchymal stem cells.</p

    Table4_The potential role of integrin alpha 6 in human mesenchymal stem cells.DOCX

    No full text
    Human mesenchymal stem cells (MSCs) are isolated from various adult and perinatal tissues. Although mesenchymal stem cells from multiple sources exhibit similar morphology and cell surface markers, they differ in their properties. In this study, we determined that the expression of integrin alpha 6 (ITGA6) and ITGA6 antisense RNA (ITGA6-AS1) correlates with the proliferation, cell size, and differentiation potential. The expression of ITGA6 was inversely correlated with ITGA6-AS1 in MSCs. The expression of ITGA6 was higher, but ITGA6-AS1 was lower in MSCs from cord placenta junction, cord tissue, and Wharton’s jelly. In contrast, ITGA6 expression was lower, while ITGA6-AS1 was higher in MSCs from the placenta. The bioinformatic analysis showed that ITGA6 genomic DNA transcribes ITGA6-AS1 from the reverse strand, overlapping ITGA6 exon-2. Additionally, we identify several putative promoters (P1-P10) of ITGA6. ITGA6-P10 is CG rich and contains CGI. EMBOSS Cpgplot software revealed a CGI length of 180 bp that extends from nucleotide 125 to 304 of the P10 sequence. We suggest that the post-transcriptional regulation of the ITGA6 in mesenchymal stem cells is controlled by the ITGA6-AS1, which could be a critical factor responsible for the heterogeneity in function and cell fate of human MSCs. These results may provide further impetus for investigations to unravel the mechanisms of ITGA6 regulation that could help maintain or improve the properties of mesenchymal stem cells.</p

    Dynamic NLR and PLR in Predicting COVID-19 Severity: A Retrospective Cohort Study

    No full text
    Abstract Introduction The hyperinflammation phase of severe SARS-CoV-2 is characterised by complete blood count alterations. In this context, the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) can be used as prognostic factors. We studied NLR and PLR trends at different timepoints and computed optimal cutoffs to predict four outcomes: use of continuous positive airways pressure (CPAP), intensive care unit (ICU) admission, invasive ventilation and death. Methods We retrospectively included all adult patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia admitted from 23 January 2020 to 18 May 2021. Analyses included non-parametric tests to study the ability of NLR and PLR to distinguish the patients’ outcomes at each timepoint. Receiver operating characteristic (ROC) curves were built for NLR and PLR at each timepoint (minus discharge) to identify cutoffs to distinguish severe and non-severe disease. Their statistical significance was assessed with the chi-square test. Collection of data under the SMACORE database was approved with protocol number 20200046877. Results We included 2169 patients. NLR and PLR were higher in severe coronavirus disease 2019 (COVID-19). Both ratios were able to distinguish the outcomes at each timepoint. For NLR, the areas under the receiver operating characteristic curve (AUROC) ranged between 0.59 and 0.81, and for PLR between 0.53 and 0.67. From each ROC curve we computed an optimal cutoff value. Conclusion NLR and PLR cutoffs are able to distinguish severity grades and mortality at different timepoints during the course of disease, and, as such, they allow a tailored approach. Future prospects include validating our cutoffs in a prospective cohort and comparing their performance against other COVID-19 scores

    Real-world evidence on therapeutic strategies and treatment-sequencing in patients with chronic lymphocytic leukemia: an international study of ERIC, the European research initiative on CLL [Abstract]

    No full text
    corecore